Understanding Quality Control for Infectious Disease Testing

Wayne Dimech ASLM Quality Control Workshop Abuja, Nigeria 9th December 2018

Disclosure

- Attendance at ASLM part-sponsored by CDC
- No personal financial gain

Log into PollEv.com/nrl2018

Acknowledgements

Joe Vincini – NRL

Katy Yao – CDCAnna Murphy

Log into PollEv.com/nrl2018

Which selection represents the location of Melbourne?

Which selection represents the location of Melbourne?

Log into PollEv.com/nrl2018

Log into PollEv.com/nrl2018 7

NRL

- Established in 1985
- Not-for-profit organisation that exists to support laboratories that perform testing for the diagnosis and management of human infectious disease
- Funded partially by the Australian Government

Mission

To promote the quality of tests and testing for infectious diseases globally.

Our objectives are achieved by providing:

- comprehensive and innovative quality assurance services;
- evaluations of tests and test algorithms;
- specialised laboratory testing services;
- training with sustainable outcomes;
- consultation and advice on policy relating to laboratory testing.

Major Stakeholders:

- Australian Government (DoH, DFAT, TGA)
- WHO, US CDC, Global Fund, UNDP
- Australian Red Cross Blood Service
- Test kit manufacturers
- Laboratories (blood screening and clinical)

Credentials:

- WHO Collaborating Centre
- Certified to Management Standard AS/NZS ISO 9001:2008
- Accreditation as a Medical Testing Laboratory; Compliant with ISO/IEC 15189: 2007
- Accredited as EQAS Provider to ISO 17043:2010
- Licensed by TGA under the Code of Good Manufacturing Practice - Human Blood and Tissue:2000

Major Activities

- NRL Evaluations
- NRL Training
- NRL Testing
- NRL Workshop
- Quality Assurance
 - EQAS
 - QC

Who am I?

Medical scientist

- Fellow AIMS
- Fellow RCPA (faculty of science)
- MBA
- Microbiology scientist
- Laboratory auditor
- WHO consultant

- Standards Australia committee member
- Reviewer of NRL's QC program results

What I am not

- Clinician
- Clinical biochemist
- Statistician
- Salesman
- Solver of all things QC

History of Quality Control

- Walter A. Shewhart of the Bell Telephone Laboratories (1924) introduced the first control chart
- W. Edwards Deming of US Bureau of the Census (1940s) used statistical sampling techniques
- Post WWII emergence in Japanese manufacturing
- Deming Cycle of quality control in 1950s
- Adoption of control charts by Levey and Jennings (1950) in clinical chemistry

History of Quality Control

- Invention of control rules by Westgard et al (1981)
- Six Sigma was pioneered by Motorola in 1980s
- Operational Process Specifications charts (OPSpecs) in 1994 by Westgard
- Six Sigma as applied to clinical chemistry introduced by Westgard in 2001
- CLSI Guidelines 3rd ed. Vol. C24-A3 (2006)
- CLSI Guidelines 4th ed. Vol. C24 (2016)

History of Quality Control

- Since 1990s only three non-NRL published papers on QC applied to infectious disease serology
 - One on HBsAg testing
 - Two reviewing antibody testing limited reagent lot changes
- No systematic studies on QC for viral load testing

Point 1: Measuring systems must be fit for purpose

Variation

Point 2:

Measurement systems have normal variation

Titanic

- Captain Smith ignored seven iceberg warnings from his crew and other ships
- Speeding to make crossing in 6 days
- Rivets made of sub-standard iron
- Water-tight compartments compromised to allow more 1st class room
- There were too few lifeboats
- Captain of SS Californian took no action

People
Processes
Components
Equipment

Variation

- Reagent lots
- Instrument and equipment
- Calibrations and maintenance
- Operators
- Storage and transport conditions
- Environmental conditions

Why Run Quality Control?

To monitor

- People
- Processes
- Components
- Equipment

Point 3:

Variation is derived from people, process, components and equipment

Common terms

Accuracy

the ability to measure the true value correctly on average

Precision

a measure of inherent variability in the measurement (the repeatability of a result)

Bias

the difference between the observed value and the expected/target value

Common terms

Quality Control

EQAS

- Monitors integrity of <u>entire</u> testing process
- Snapshot in time
- Identifies systematic and random errors

Inter-lab comparisons identify assay and/or lab problems

QC

- Monitors analytical process only
- On-going
 - Identifies systematic and random errors
- Estimates precision within lab
- Inter-lab
 comparisons for
 estimation of
 accuracy
- Uncertainty of Measurement

Caveat – This talk is about:

Quality control for infectious disease testing

Quality control means Run control (IQC or EQC)

The Quality Control Process

QC Samples

Testing Frequency

Data Management

Data Analyses

Determine Control Limits

Monitor Variation

Investigate Variation

Always test the manufacturer's kit controls as these are used to validate the assay

Quality Control Sample

- Sufficient volume for extended use
- Stable over a long period
- Minimal lot-to-lot variation
- Composition similar to patient sample
- Results within the clinically significant range
- Must not "saturate" the assay
- Must be on the linear part of the curve
- Colour coded; Bar coded
- Liquid stable no reconstitution

Ideal QC/Assay Combination

Serology Dose Response

Serology Dose Response

Serology Dose Response

Examples of Dilution Series

Point 4:

Dynamic range of serology assays is not always linear

Point 5:

Choose QC sample that reacts at the linear portion of the dilution curve

Differences between Clinical Chemistry and ID Assays

Clinical Chemistry	Infectious Disease Serology
Linear	Non-linear
Inert analyte	Functional biological analyte
Quantitative	Qualitative
Adjust for bias	No adjustment for bias
Lower level of regulation	Highly regulated
Several medical decision points	Single decision point
Adjust for lots variation	No adjustment for lot variation

Differences between Clinical Chemistry and ID Assays

Clinical Chemistry	Infectious Disease Serology
International standards	Poor or no standards
Certified reference methods	No CRMs
Available in a pure form	Different forms
Single target	Multiple and varying targets
TEa	?? TEa

Point 6:

There are fundamental differences between testing for an inert chemical and a functional, biological analyte

HIV western blot

- Different Ab responses in different people
- Assay response depends on what the manufacturer has used in design

Testing Frequency

- No correct answer
- Cost vs risk
- Knowledge of assay
- Local and international regulation
- Minimum vs optimum

Point 7: Recommendation Daily at start of day for automated platforms and or every microtiter plate

Data Management

- QC samples are a tool, not the end point
- Results collected after each test run
- Displayed graphically
- Have acceptance rules
- React immediately if unexpected results are detected

Point 8:

Monitoring QC results without reference to a peer-group only monitors precision

What We (Think) We Know About Quality Control

Interpretation of QC Results

TEA LEAF MEANINGS

Traditional methods for setting QC limits rely on mean $\pm xSD$

Sampling Distribution of Means

-2SE

... of what data set?

2SE

3SE

- RiliBÄK standard (2015) 15
- Public Health England (2015)
 20
- CLSI Guideline third edition C24-A3 (2006) 20
- CLSI Guideline fourth edition C24 (2016)
 20 (recalculate periodically)

Traditional Approaches to QC

- Assumes normal distribution of QC results
- Patient and QC sample results change proportionally (Commutability)
- Data set used to establish limits are representative of future results

Point 9:

These assumptions are not true for infectious disease serology

Data are Normally Distributed

QC Commutability

Assuming QC commutability, percentage misinterpretation of chemistry results can be determined

QC Commutability

- However, in serology, very few results will be misinterpreted
- How do you estimate TEa for serology?

Low levels QC mimics seroconversion

Low positive, diluted QC mimics a seroconverter
 Diluted samples ≠ early infection
 Antibodies ramp up very quickly
 Antibody profiles different to early infection (seroconversion)

Point 11: Using a diluted sample to mimic early infection is a flawed concept

WB Seroconversion vs Dilution

Sept

August

Laboratory Range:2.20 to 2.65

to normal variation of serology assays

What would you do?

Possible actions when reagent lot changes

- A Ignore
- B Re-test QC
- C Re-calibrate instrument
- D Re-set limits
- E Contact manufacturer
- F Reject reagent lot

Log into PollEv.com/nrl2018

What do you do?

A - Ignore

B - Re-test QC

C - Re-calibrate instrument

D - Re-set limits

E - Contact manufacturer

F - Reject reagent lot

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

PollEv.com/nrl2018

Point 13:

Usually there are insufficient runs to re-set limits before reagent lot is exhausted

Point 14:

By re-setting limits, you are accepting that the variation is normal

Laboratory

Normal Assay Variation

- One years results for Abbott Architect HCV
- 71 laboratories
- 94 instruments
- 77 reagent lot numbers
- 7 QC lot numbers
- 18,234 results
- CV% range: 3.74 to 10.86%
- CV% average 7.24%
- NRL Range: 2.1 to 3.5 (S/Co)

Laboratory

Setting Acceptance Limits for Serology

- 20 data points is not representative
- Should include all normal variation
- QConnect limits uses historical data
- Laboratories can use their own data over time
- Determine acceptable range and acceptable CV%

Quality Control for Viral Load Testing

- Three processes
 - Extraction
 - Amplification
 - Detection
- Possibly use different reagents and instruments for each process

Differences between Clinical Chemistry and Viral Load Testing

Clinical Chemistry	Serology	Viral Load
Linear	Non-linear	Linear
Inert analyte	Functional biological analyte	Biological, not functional
Quantitative	Qualitative	Quantitative
Adjust for bias	No adjustment for bias	No adjustment for bias
Lower level of regulation	Highly regulated	Highly regulated
Several medical decision points	Single decision point	Several medical decision points
Adjust for lots variation	No adjustment for lot variation	No adjustment for lot variation
International standards	Poor or no standards	International standards
Certified reference methods	No CRMs	Certified reference methods
Available in a pure form	Different forms	Some mutations or variation
Single target	Multiple and varying targets	Single target
TEa	?? TEa	?? TEa
Hepatitis B DNA

Assay	No Labs	No QC Lots	n	Mean (log ¹⁰)	SD	CV(%)
Abbott RealTime HBV (0.5 mL)	2	3	186	2.4	0.12	4.99
Abbott RealTime HBV (0.2 mL)	4	3	385	2.5	0.23	8.88
Roche COBAS AmpliPrep/TaqMan HBV Test v2	16	3	604	2.3	0.10	4.40
Roche COBAS 4800 HBV	1	2	73	2.3	0.08	3.52
Roche cobas HBV Quantitative (6800/8800)	6	2	208	2.3	0.16	6.83

Hepatitis C RNA

Assay	No Labs	No QC Lots	n	Mean (log ¹⁰)	SD	CV(%)
Abbott RealTime HCV (0.2 mL)	2	2	79	2.3	0.25	10.56
Abbott RealTime HCV (0.5 mL)	4	2	196	2.4	0.24	9.52
Roche COBAS AmpliPrep/COBAS TaqMan HCV v2	16	2	724	2.7	0.25	8.94
Roche cobas 4800 HCV	2	2	92	2.5	0.18	7.24
Roche cobas HCV Quantitative (6800/8800)	6	2	299	2.4	0.19	7.78

HIV RNA

Assay	No Labs	No QC Lots	n	Mean (log ¹⁰)	SD	CV(%)
Abbott RealTime HIV-1 (0.2 mL)	1	2	22	2.3	0.16	6.85
Abbott RealTime HIV-1 (0.6 mL)	4	2	217	2.2	0.16	6.91
Cepheid Xpert HIV-1 Viral Load	1	2	13	2.1	0.10	4.57
Roche cobas 4800 HIV-1	1	2	33	2.2	0.13	5.63
Roche cobas HIV-1 Quantitative (6800/8800)	3	2	139	2.2	0.14	6.28
Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test v2	16	2	902	2.4	0.15	6.10

LJ Chart for Selected Laboratory

HCV Viral Load

HBV Viral Load

Quality Control for Viral Load Testing

- Similarities with clinical chemistry and serology
- Dose response is linear
- Reagent lot variation not as great as serology
- Standardisation between assays is good
- Clinically significant change is acknowledged
- Precision is predictable

Setting Acceptance Limits for Viral Load Testing

- Traditional Methods?
- QConnect Limits?
- Alternative based on:
 - clinical significant change (TEa)
 - expected variation (QC and EQA)
 - Assay specific or general rules
- Cannot assume VL is similar to chemistry or serology
- Requires investigation using true QC results; not modelling

Quiz Time

Let's have some fun!

Which set of QC results are bst?

What is the cause of the change

A - Change not significant

B - Reagent lot number

C - Instrument

D -Process/People

Answer:

Classic reagent lot variation

Normal QC performance

●n = 593

- Data within NRL Limits = 99.3% (n=589)
- Number of points within ±2SD (n=569) and ±3SD (n=591)

Compare this with statistical likelihood $\pm 2SD = 95\%$ (actual 95.95%) $\pm 3SD = 99.7\%$ (actual 99.66%)

Answer:

Nothing to see here folks

HPV NAT on Roche COBAS HPV Assay

What is the cause of the change

Trending by Instrument

Trending by Reagent Lot

Trending by Operator

- Investigation initiated
- Observed processing of samples by each operator
- Discrepancies in processes detected
- Re-trained all operators
- Results returned to expected level

Answer:

Process issue

Scenario 4

Anti-HBs testing on Abbott Architect

What is the cause of the change

Comparison with Peers

Trending by Reagent Lot

Trending by Operator

Trending by Instrument

Resolution of Issue

Answer:

Instrument Issue

- Measuring systems must be fit for purpose
- Measurement systems have normal variation
- Variation is derived from people, process, components and equipment
- Oynamic range of serology assays is not always linear
- Choose QC sample that reacts at the linear portion of the dilution curve

- Fundamental differences between testing for an inert chemical and a functional, biological analyte
- Recommend QC at start of day for automated platforms or every microtiter plate
- Monitoring QC results without reference to a peergroup only monitors precision
- Traditional QC approach assumptions are not true for infectious disease serology

- Commutability of serology QC samples and patient samples should not be assumed
- Using a diluted sample to mimic early infection is a flawed concept
- Reagent lot variation is the major contributor to normal variation of serology assays

- There are usually insufficient runs to re-set limits before reagent lot is exhausted
- By re-setting limits, you are accepting that the variation is normal
- Viral Load Testing has similarities with clinical chemistry and serology
- Promotion of methods for establishing acceptance criteria for viral load QC needs to be based on real data

- Collect metadata with QC results
 - Date
 - Instrument(s) identification
 - Reagent lot number(s)
 - Operators
 - QC lot number
 - Calibration and maintenance data

- Monitoring Quality Control in a systematic manner can identify unexpected variation that may, in time, contribute to incorrect patient results
- QC is done in addition to kit controls and EQA and QMS
- Do not blindly follow without evidence you are scientist

Thank-you!

